

Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S2 Paper WST02/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log number P63151A
Publications Code WST02_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Questio Numbo			Scheme		Marks
		roughout the paper the candidates	may use different letters to the	e ones given in the mark sch	eme.
	(a)				
		$X \sim B(20, 0.05)$ or $Y \sim B(20, 0.05)$			B1
	(i)	$P(X \le 4) - P(X \le 2) = 0.9974 - 0.9$	245 <u>or</u>		
			$5^{3} \times 0.95^{17} + {20 \choose 4} 0.05^{4} \times 0.95^{16}$	= 0.05958+ 0.01332	M1
		= 0.072909	(')	awrt 0.0729	A1
((ii)	$P(X \leqslant 1) \qquad \underline{\text{or}} P(Y \geqslant 19)$	$(0.95)^{19}(0.05)+(0.95)^{2}$		M1
			= 0.735839	awrt 0.736	A1 (5)
		- 0.7336	- 0.733037	awit <u>0.730</u>	A_1 (3)
((b)	[Let $W = \text{no. of packets where } Y >$	18] $P(W = 5) = ("0.7358$.") ⁵	M1
			= 0.21573	awrt <u>0.216</u>	A1
					(2)
	()	H 0.05 H > 0.05			D1
((c)	$H_0: p = 0.05$ $H_1: p > 0.05$			B1 (1)
((d)	V = no. of seeds that do not germina	ate $V \sim B(100, 0.05)$ approximate	ates to $V \sim Po(5)$	M1A1
		-	CR for 1-tail in (c)	CR for 2-tail in (c)	
		$P(V \geqslant 8) = 1 - P(V \leqslant 7)$	$P(V \ge 9) = 0.0681$	$P(V \ge 10) = 0.0318$	M1
		$P(V \geqslant 8) = 1 - P(V \leqslant 7)$ = 1 - 0.8666	$P(V \ge 10) = 0.0318$	$P(V \ge 11) = 0.0137$	
		= 0.1334	$CR \ V \geqslant 10 \text{ oe}$	$CR \ V \geqslant 11$ oe	A1
		Accept H ₀ or not significant or 8 or		<u>l</u>	dM1
		Data consistent with <i>Spany</i> 's claim			A1cso
					(6)
			Nicker		Total 14
	(a)	B1: writing or using B(20,0.05) [A	Notes Allow $Y \sim B(20, 0.95)$ if Y is clear	arly defined] Implied by 1 co	rrect nroh
	` ′	M1: for $P(X \le 4) - P(X \le 2)$ and	* '		•
	(i)	, , , , , , , , , , , , , , , , , , ,	-	· · · · · · · · · · · · · · · · · · ·	υ.
((ii)	M1: for $P(X \le 1)$ or $[20] \times (0.95)$	$(0.05) + (0.95)^{20}$ - condone n	nissing 20	
((b)	M1: for $(their(a)(ii))^5$			
((c)	B1: both hypotheses correct with <i>p</i>	or π		
((d)	1 st M1: for realising a Poisson appro	eximation is appropriate.	NB Po(95) is M	[0A0
`	()	1 st A1: writing or using $V \sim Po(5)$ i.		()	
		2^{nd} M1: for writing or using $1-P$	$V \leqslant 7$) or $P(V \leqslant 7) = 0.8666$		
		or writing $P(V \ge 10) = 0.03$	18 <u>or</u> $P(V \ge 9) = 0.0681$ <u>or</u> 1	$P(V \ge 11) = 0.0137$ leading t	o a CR.
		Implied by correct CR or pr			
				low any letter but CR must ma	itch part(c)
		2nd A1 : for awrt 0.133 or $V \ge 10$ or			
		3 rd dM1: dep on 2 nd M1. ft their CR	or probability. A correct staten	nent based on comparing 8 wit	th their CR
		3 rd dM1: dep on 2 nd M1. ft their CR or their prob with 0.05 or 0	or probability. A correct staten 0.025 [condone 0.866<0.95]—co	nent based on comparing 8 wit ontradicting non-contextual co	th their CR mments M0
		3 rd dM1: dep on 2 nd M1. ft their CR or their prob with 0.05 or 0 3 rd A1 cso: all previous marks must	or probability. A correct staten 0.025 [condone 0.866<0.95]—co	nent based on comparing 8 wit ontradicting non-contextual co nt in context. Need Bold word	th their CR mments M0
		3 rd dM1: dep on 2 nd M1. ft their CR or their prob with 0.05 or 0 3 rd A1 cso: all previous marks must NB award M1A1 for a constitution of the second	or probability. A correct staten 0.025 [condone 0.866<0.95]—co be awarded. A correct stateme correct contextual statement on the sor they are the wrong way are	nent based on comparing 8 with ontradicting non-contextual count in context. Need Bold word its own. Ound, then 3 rd M0 3 rd A0	th their CR mments M0
Sc	C1	3 rd dM1: dep on 2 nd M1. ft their CR or their prob with 0.05 or 0 3 rd A1 cso: all previous marks must NB award M1A1 for a control of their are no hypotheses. Normal approximation: Award marks	or probability. A correct statem 0.025 [condone 0.866<0.95]—co be awarded. A correct stateme correct contextual statement on the series or they are the wrong way are the in pairs with 2, 4 or 6 marks.	nent based on comparing 8 with ontradicting non-contextual count in context. Need Bold word its own. Sound, then 3 rd M0 3 rd A0 ks available	th their CR mments M0 ds.
	C1 C2	3 rd dM1: dep on 2 nd M1. ft their CR or their prob with 0.05 or 0 3 rd A1 cso: all previous marks must NB award M1A1 for a constitution of the second	or probability. A correct staten 0.025 [condone 0.866<0.95]— cobe awarded. A correct statemeter correct contextual statement on the service of they are the wrong way are the in pairs with 2, 4 or 6 marks in pairs with 2, 4 or 6 marks 1; probability awrt 0.125/6 M	nent based on comparing 8 with contradicting non-contextual count in context. Need Bold word its own. Sound, then 3 rd M0 3 rd A0 ax available 1A1; Correct contextual concli	th their CR mments M0 ds.

Question Number	Scheme	Mai	rks
2. (a)	[$X =$ number of faults in 4 m ² so $X \sim Po(3)$]		
	$P(X = 5) = P(X \le 5) - P(X \le 4) [= 0.9161 - 0.8153] \underline{\text{or}} \frac{e^{-3}3^5}{5!} \text{(allow } \lambda \text{ instead of 3)}$ $= 0.1008 \qquad \underline{\text{or}} 0.100818 \qquad \text{awrt} \underline{\textbf{0.101}}$	M1 A1	(-)
(b)	[$Y = \text{number of faults in } 6 \text{ m}^2 \text{ so}$] $Y \sim \text{Po}(4.5)$ and $[P(Y > 5)] = 1 - P(Y \le 5)$ [= 1 - 0.7029] = 0.2971 or (calc) 0.29706956 awrt 0.297	M1 A1	(2)
(c)	0.101 (or ft their answer to (a)) Faults occur independently/ randomly	B1ft B1	(2)
(d)	[$F =$ number of faults in a small rug] $F \sim Po(0.9)$	В1	
	$e^{-"0.9"}n \times 80 + (1 - e^{-"0.9"})n \times 60 \ge 4000$ or $(awrt 0.407)n \times 80 + (awrt 0.593)n \times 60 \ge 4000$	M1	
	$n \geqslant \frac{4000}{2000^{-0.9"} + 60} = 58.71$	M1	
	n = 59	A1	
			(4)
(e)	$H_0: \lambda = 9$ $H_1: \lambda > 9$	В1	
	$R \sim \text{Po}("0.9" \times 10) \text{and} [P(R \ge 13)] = 1 - P(R \le 12) [= 1 - 0.8758]$	M1	
	$P(R \le 13) = 0.9261 \text{ or } P(R \ge 14) = 0.0739 \text{ or } P(R \le 14) = 0.9585 \text{ or } P(R \ge 15) = 0.0415$ $[P(R \ge 13)] = 0.1242 \text{ awrt } 0.124 \text{ or } CR R \ge 15 \text{ (oe)}$	A1	
	so insufficient evidence to reject H_0 /not significant/ not in critical region	M1	
	There is insufficient evidence that the rate at which faults occur is higher for Rhiannon	A1	(5)
		Tota	(5) al 15
	Notes	•	
(a)	M1: for using or writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda} \lambda^5}{5!}$ (Accept letter λ or any value of		
(b)	M1: writing or using Po(4.5) and sight of $[P(Y > 5)] = 1 - P(Y \le 5)$ Implied by sight of $1 - 0.7$	029	
(c)	2 nd B1: for a comment about faults occurring randomly/independently or Poisson has "no memor	y"	
(d)	B1: writing or using Po(0.9) May be implied by sight of 0.407 or 0.593 1 st M1: for $e^{-\lambda}n \times 80 + (1 - e^{-\lambda})n \times 60 > 4000$ any value for λ . Allow = 4000		
	2^{nd} M1: for solving their equation leading to a positive value of n . Allow any value of λ and all A1: for an answer of 59 only	low <i>n</i> =	·
(e)	B1: both hypotheses correct with λ or μ . Allow 3 or 0.75 or 0.9 instead of 9 1st M1: for writing or using Po("9") and writing or using $1 - P(R \le 12)$ (implied by $1 - 0.8758$) or one of: $P(R \le 13) = 0.9261$, $P(R \ge 14) = 0.0739$, $P(R \le 14) = 0.9585$, $P(R \ge 15) = 0.0415$ leading to a CR 1st A1: for probability = awrt 0.124 or CR of $R \ge 15$ oe e.g. $R > 14$ 2nd M1: for a correct conclusion based on their prob & 0.05 or their CR & 13. Assume correct hypotheses. Do not allow contradicting conclusions		
	2 nd A1: dep on both Ms for a correct contextual comment including the words in bold.		

Question Number	Scheme	Marks
3. (a)	12/25 - 6/25 -	M1
	0 1 2 4 y	A1 (2)
(b)	$\frac{d\left(\frac{3}{50}(4y^2 - y^3)\right)}{dy} = \frac{3}{50}(8y - 3y^2)$	M1
	$\frac{3}{50}(8y-3y^2)=0$; $y=\frac{8}{3}$ oe	M1; A1
(c)	$E(Y^2) = \int_1^2 \left(\frac{6}{25}y^3 - \frac{6}{25}y^2\right) dy + \int_2^4 \left(\frac{12}{50}y^4 - \frac{3}{50}y^5\right) dy$	(3) M1
	$= \left[\frac{6}{100}y^4 - \frac{6}{75}y^3\right]_1^2 + \left[\frac{12}{250}y^5 - \frac{3}{300}y^6\right]_2^4$	A1
	$= \left[\left(\frac{8}{25} \right) - \left(-\frac{1}{50} \right) \right] + \left[\left(\frac{1024}{125} \right) - \left(\frac{112}{125} \right) \right] ; \qquad = \frac{1909}{250} \text{or} 7.636 \text{or} 7.64$	dM1; A1
(d)	$Var(Y) = "\frac{1909}{250}" - 2.696^{2}$ $= 0.367584$ awrt <u>0.368</u>	(4) M1
	= 0.367584 awrt <u>0.368</u>	A1 (2)
(e)	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$	M1
	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$ $\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \frac{6}{25} \left[\left(\frac{x^{2}}{2} - x \right) + \frac{1}{2} \right] = 0.1 \underline{\text{or}} \frac{6}{50}(x-1)^{2} = 0.1$ $(y-1)^{2} = \frac{5}{6} \underline{\text{or}} y = 1 \pm \sqrt{\frac{5}{6}} ; \qquad y = 1.9128 \text{awrt} \underline{1.91}$	A1
	$(y-1)^2 = \frac{5}{6} \text{ or } y = 1 \pm \sqrt{\frac{5}{6}}$; $y = 1.9128$ awrt <u>1.91</u>	dM1; A1
		(4) Total 15
1	Notes	

- M1: the two parts must be the right shape and not joined. Ignore labels and condone if it goes below x axis **A1:** for 6/25, 12/25, 1, 2 and 4 and must not go beyond 4 or < 1
- 1st M1: for attempting to differentiate $y^n \rightarrow y^{n-1}$ for n = 2 or 3 **2nd M1:** for equating their differential (\neq f(y)) to zero and an attempt at solving so must reach y = ...for $\frac{8}{3}$ oe and allow awrt 2.67 If y = 0 is seen it must be rejected.
- 1st M1: for using $\int y^2 f(y)$ for both parts, <u>and</u> an attempt at integration (some $y^n \to y^{n+1}$) Ignore limits. 1st A1: for correct integration for both parts. Ignore limits. 2nd dM1: dep on 1st M1 for adding the 2 parts together and substituting the correct limits in to each part. 2nd A1: allow 7.64 or 7.636 You will need to check that they have used algebraic integration.
- **M1:** for "their part(c)" -2.696^{2} **A1:** for awrt 0.368
- 1st M1: allow $\frac{1}{2}t \times \frac{6}{25}(t-1) = 0.1$ or $\int_1^x \frac{6}{25}(y-1) dy = 0.1$ and some integration and sub' of 1 and x

1st A1: for a correct equation in any form

2nd dM1: dependent on 1st M1 for a correct method for solving their equation. Implied by correct answer. 2nd A1: for awrt 1.91 (second solution should be rejected)

Question Number	Scheme	Marks		
4.	[A = the number on the ball] $P(A=1) = \frac{2}{9}$ $P(A=2) = \frac{1}{3}$ $P(A=5) = \frac{4}{9}$	B1		
(i)	Possible samples with a range of 4 are: $(1,1,5)$ $(1,2,5)$ $(1,5,5)$	M1		
	$(1,1,5) \ \ \frac{2}{9} \times \frac{2}{9} \times \frac{4}{9} \times 3 = \frac{16}{243} \qquad \underline{\text{or}} \qquad (1,5,5) \ \ \frac{2}{9} \times \frac{4}{9} \times \frac{4}{9} \times 3 = \frac{32}{243}$	M1		
	$(1,2,5)$ $\frac{2}{9}$ $\times \frac{1}{3}$ $\times \frac{4}{9}$ $\times 6 = \frac{16}{81}$	M1		
	$P(B=4) = \frac{16}{243} + \frac{32}{243} + \frac{16}{81} = \frac{32}{81}$	A1		
(ii)	$P(B=0) = \left(\frac{2}{9}\right)^{3} + \left(\frac{1}{3}\right)^{3} + \left(\frac{4}{9}\right)^{3} = \frac{11}{81}$	M1		
	$P(B=1) = 3 \times \frac{2}{9} \times \left(\frac{1}{3}\right)^{2} + 3 \times \frac{1}{3} \times \left(\frac{2}{9}\right)^{2} = \frac{10}{81} \text{ or } P(B=3) = 3 \times \frac{1}{3} \times \left(\frac{4}{9}\right)^{2} + 3 \times \frac{4}{9} \times \left(\frac{1}{3}\right)^{2} = \frac{28}{81}$	M1		
	$1 - \frac{11}{81} - \frac{10}{81} - \frac{32}{81} = \frac{28}{81} \qquad \underline{\text{or}} 1 - \frac{11}{81} - \frac{28}{81} - \frac{32}{81} = \frac{10}{81}$			
	b 0 1 3 4] B1		
	P(B=b)	A1		
		(10) Total 10		
	Notes			
	B1: for writing or using the 3 correct probabilities			
(i)				
	2nd M1: for $p \times p \times q \times 3$ or $p \times q \times q \times 3$ where p and q are probabilities with $(p+q) < 1$ 3rd M1: for $p \times q \times r \times 6$ where p , q and r are probabilities with $(p+q+r) = 1$			
	A1: for $\frac{32}{81}$ or awrt 0.395 [Calc: 0.3950617]			
(ii)	1st M1: for $p^3 + q^3 + r^3$ (for their p, q and r)			
	2nd M1: for $3 \times p \times (q)^2 + 3 \times q \times (p)^2$ or $3 \times q \times (r)^2 + 3 \times r \times (q)^2$ (for their p, q and r)			
	3^{rd} M1: for use of all probabilities of $P(B = b)$ adding to 1 [Must have 3, 4 or 5 values for b]			
	B1: for ranges 0, 1, 3 and 4 with none omitted and no extras. Allow extras if assigned prol for a fully correct probability distribution.	pability of 0		
SC A0 in (i)	If A0 scored in (i) <u>and</u> all other marks scored in (ii) <u>and</u> correct prob's for 2 values of b : award	A1 in (ii)		

Question Number	Scheme	Marks
5 (a)(i)	If $y = 0$ then $1 - (\alpha + \beta y^2) = 0$ $\therefore \alpha = 1$ *	B1cso
(ii)	If $y = 5$ then $1 - (\alpha + \beta y^2) = 1$	
	$1+25\beta=0 \therefore \beta=-\frac{1}{25} \qquad *$	B1cso (2)
(b)	$F(y) = \frac{1}{25}y^2$ so $f(y) = \frac{dF(y)}{dy} = \frac{2}{25}y$	(2) M1
	$\therefore [f(y)] = \begin{cases} \frac{2}{25}y & 0 \le y \le 5\\ 0 & \text{otherwise} \end{cases}$	A1
(c)	$\left[P\left(R > \frac{11}{5}\right) = P\left(Y > \frac{5}{3}\right) = 1 - \frac{1}{25} \times \left(\frac{5}{3}\right)^2 = \frac{8}{9} \text{ oe}$	(2) B1
	$\frac{3d - \frac{11}{5}}{3d - d} = \frac{8}{9} \text{ oe } \frac{\frac{11}{5} - d}{3d - d} = \frac{1}{9} \text{ oe}$	M1
	$d = \frac{9}{5}$ oe	A1 (3)
(d)	$P\left(Y < \frac{11}{5}\right) = \frac{121}{625}$ or 0.1936	B1
	[Let $G =$ the number of spins with distance < 2.2 m] $[P(G \ge 5) =]$	
	$ \left(\left[\frac{1}{9} \right]^{3} \times \left[\left[\frac{121}{625} \right]^{3} + 3 \times \left[\left[\frac{1}{9} \right]^{2} \times \left[\frac{8}{9} \right] \right] \times \left[\left[\frac{121}{625} \right]^{3} + 3 \times \left[\left[\frac{1}{9} \right]^{3} \times \left[\frac{121}{625} \right]^{2} \times \left[\frac{504}{625} \right] \right] $	M1, M1
	= $0.000\ 373226$ awrt $0.000\ 373$	A1
		(4) Total 11
	Notes	Total 11
	11065	

- (a) (i) B1: for stating or using the fact that when y = 0 then $\alpha + \beta y^2 = 1$
 - (ii) B1: for stating or using that when y = 5 then $\alpha + \beta y^2 = 0$ and setting up the equation leading to $\beta = -\frac{1}{25}$
 - **(b)** M1: for differentiating. Implied by $\pm \frac{2}{25} y$ can ft their value of β

A1: for a fully correct f(y) defined for the whole range.

(c) B1: for using F(y) and $\frac{5}{3}$ to find $P(Y > \frac{5}{3})$. Allow $\frac{8}{9}$ or any exact equivalent.

M1: for LHS = p where 0

A1: for $\frac{9}{5}$ or any exact equivalent e.g. 1.8

(d) B1: for $\frac{121}{625}$ or awrt 0.194 This mark could be implied by a correct answer.

1st M1: for $p^3q^3 + np^2(1-p)q^3 + np^3q^2(1-q)$ where p and q are probabilities and n is an integer > 0

2nd M1: for $p^3q^3 + 3p^2(1-p)q^3 + 3p^3q^2(1-q)$ where p and q are probabilities.

A1: for awrt 0.000 373

Question Number	Scheme	Marks
6. (i)	z = 1.25	B1
	$\frac{187.5 - \mu}{\sigma} = 1.25$	M1 M1 A1
	$187.5 - \mu = 1.25\sigma$	
	$\mu = 225 p$	M1
	$\sigma = \sqrt{225 p(1-p)}$	M1
	$(187.5 - 225p)^{2} = (1.25)^{2} \times 225p(1-p) \underline{\text{or}} (150 - 180p)^{2} = 225p(1-p) \text{(o.e.)}$	M1
	e.g. $900(5-6p)^2 = 225(p-p^2) \Rightarrow 4(25-60p+36p^2) = p-p^2$	A1*
	Leading to $145 p^2 - 241 p + 100 = 0 *$	Al
(ii)	$\left[(29p - 25)(5p - 4) = 0 \Rightarrow \right] \qquad p = 0.8 \underline{\text{or}} p = \frac{25}{29} \text{ (accept: } 0.862(0689))$	M1
	[$p = $] <u>0.8</u> because 0.862 gives a mean greater than 188 (oe)	A1
		(10) Total 10
	Notes	
(i)	B1: for 1.25 or better (calculator gives: 1.25027)	
	1 st M1: for attempting to use a continuity correction i.e. for sight of 188 ± 0.5	
	2nd M1: for standardising using μ and σ or np and $\sqrt{np(1-p)}$ (Condone letter n or any integration	ger > 0
	1 st A1: for a correct equation with compatible signs, allow 1.250 If using a value for n it must 3^{rd} M1: for $\mu = 225p$ seen at any stage in the working.	st be 225
	4th M1: for $\sigma = \sqrt{225p(1-p)}$ seen at any stage in the working.	
	5 th M1: for squaring to get a quadratic equation in <i>p</i> 2 nd A1*: dep on all previous Ms and use of 1.25 for at least 1 correct intermediate step from a conquadratic equation e.g one of those in scheme for 5 th M1	orrect
(ii)	quadratic equation e.g one of those in scheme for 3^{-1} M1: M1: for solving the quadratic correctly-leading to $p =$ or implied by 0.8 or awrt 0.862 A1: for 0.8 and a correct reason to eliminate 0.862	2